Read e-book online Acoustics of Layered Media II: Point Sources and Bounded PDF

By Professor Leonid M. Brekhovskikh, Dr. Oleg A. Godin (auth.)

ISBN-10: 3662027763

ISBN-13: 9783662027769

ISBN-10: 366202778X

ISBN-13: 9783662027783

Show description

Read Online or Download Acoustics of Layered Media II: Point Sources and Bounded Beams PDF

Similar media books

Get Advances in Multimedia Modeling: 13th International PDF

The 2 quantity set LNCS 4351 and LNCS 4352 constitutes the refereed court cases of the thirteenth overseas Multimedia Modeling convention, MMM 2007, held in Singapore in January 2007. in line with rigorous reviewing, this system committee chosen 123 conscientiously revised complete papers of the most technical periods and 33 revised complete papers of four designated periods from a complete of 392 submissions for presentation in volumes.

Read e-book online Praxishandbuch Social Media Recruiting: Experten Know-How / PDF

Social Media Recruiting gilt als Wunderwaffe im Kampf gegen den Fachkräftemangel – zu Recht! Erfahrene Experten aus der Praxis zeigen, wie guy die wichtigsten Social Media-Kanäle im Personalrecruiting erfolgreich und effektiv nutzt und mit proaktiver Personalsuche die Quantität und Qualität der Bewerber signifikant steigern kann.

Social Media für die erfolgreiche Zahnarztpraxis - download pdf or read online

Fb oder Türschild? – Beides! Souveräner und effizienter Umgang mit fb, Twitter, Youtube, Google+, Flickr, Xing – zur Steigerung von snapshot und Bekanntheit. Der eigene AuftrittSchnell einrichtenProfessionell und erfolgreich pflegenWie finde ich bei Bedarf einen geeigneten Dienstleister? Wohin geht der development?

Additional info for Acoustics of Layered Media II: Point Sources and Bounded Beams

Sample text

3) at the plane z = h is located at the point x = O. This choice of coordinates (x, z) we will use everywhere below. 14). 4) +ikh[(1 _l)1/2 - (1 - qt)1/2]} . Note that we have a large parameter k2 w 2 in the exponential. Hence, the integral from Vi (q) can be calculated by the steepest descent (SD) method (Sect. 1). In the integral from Vi(q) the branch point q = n may be close to the stationary point q = qo. Integrals of this type are considered in Sect. 3. Pr(x, 0) = V(~o) (~y/2 [Vi (qo) + V2(qo)(2a)-1/4 exp (~ _ x exp [- : : (x - XO)2] [1 + 0 (k~ )] .

23,24]. That is why this effect is usually called the Goos-Hanchen effect. 8] the reader can find a rather complete bibliography of literature which appeared before the early 1970s as well as a description of applications of this effect in different branches of science. 25,26]. If the sound wave in a liquid is incident upon the interface of solid and liquid homogeneous halfspaces, the reflection coefficient is [Ref. 1, Eq. 8) where ~ = k sin 0 = k/ sin 0/ = kt sin 0(0 a = k cos 0, al = k/ cos 0" ,81 = kt COS Ot, -kt COS 20t /2 sin 0(0 k, k/, kt are the wave numbers for the sound wave in the liquid, and longitudinal and shear waves in the solid, respectively; 0, 0/, Ot are the incidence angle and refraction angles for the corresponding waves.

We have IZI ~ ec and Z = -ilZI if n < 1. At such impedances Z, the values of the reflection coefficients v and V are similar at any incidence angle. The same approximation for the reflection coefficient V(q) holds if n ~ 1 (low sound velocity in the lower halfspace as is the case, for example, for some porous media or for silt ocean bottoms saturated by gaseous bubbles), since cos ()I = (1- n- 2 sin2 ()1/2 :::::: 1 at any (). The approximation of a boundary as one described by the angle-independent impedance is of practical use in architectural acoustics, in atmospheric acoustics (reflection from the surface of the earth) and so on.

Download PDF sample

Acoustics of Layered Media II: Point Sources and Bounded Beams by Professor Leonid M. Brekhovskikh, Dr. Oleg A. Godin (auth.)

by Daniel

Rated 4.37 of 5 – based on 9 votes